

The sky is no longer the limit: creating and innovating for a better future

5+x+k+>

im

h--

NAZARBAYEV UNIVERSITY

10 Ο

+x+y+2a+21

C x+y+2a+21

## COMPLETE LIST OF D

#### UNDERGRADUATE

- BEng in Mechanical and Aerospace Engineering
- BEng in Chemical and Materials Engineering
- BEng in Electrical and Computer Engineering
- BEng in Civil and Environmental Engineering
- BSc in Robotics and Mechatronics
- BSc in Computer Science

## **SCHOOL** OVERVIEW

Nazarbayev University School of Engineering and Digital Sciences integrates best practices in engineering education with cutting-edge research and technology development in an ethical, thoughtful and socially responsible manner. We offer a collaborative environment embracing interdisciplinary thought, creativity, and entrepreneurship serving the nation and the world.

Our graduates are in high demand because of the quality education they have received and the status of Nazarbayev University as a world-class university in STEM education. Many of our graduates will certainly become tomorrow's leaders of the Central Asia and Eurasia's high-tech community.

## 



#### MADI ALDABERGEN

BEng in Electrical and Computer Engineering, class of 2016 alumnus

Today, I work in Dubai and help the city to become the most innovative city in the world by 2021. I am managing a portfolio of two startup accelerator programs for more than 20 companies in the fields of energy efficiency, Artificial Intelligence (AI), water generation, Internet of Things, etc. I cannot thank NU enough for the education I received and the opportunities it opened up for me.



#### AIGERIM OMIRKHAN

BEng in Chemical and Materials Engineering, class of 2015 alumna

NU provided me with stimulating learning environment that is both supportive and motivating. It taught me to dream big and achieve my goals. Now I am continuing my research and pursue PhD at Imperial College, UK.

## degrees

#### GRADUATE

- Master of Engineering Management
- MSc in Chemical and Materials Engineering
- MSc in Civil and Environmental Engineering
- MSc in Electrical and Computer Engineering
- MSc in Mechanical and Aerospace Engineering
- MSc in Biomedical Engineering
- MSc in Robotics
- MSc in Computer Science
- MSc in Data Science

#### PHD

- PhD in Chemical Engineering
- PhD in Civil Engineering
- PhD in Computer Science
- PhD in Electrical Engineering
- PhD in Mechanical Engineering
- PhD in Robotics Engineering

## GENERAL **INFORMATION**

Campus: Nur-Sultan, Kazakhstan Intake: August

Language of instruction: English

## WHY NU?

World-class faculty

Modern campus with strong infrastructure



**KEY** FACTS

faculty from

countries



Faculty:

114

26



Scholarships

70% male

30% <sub>female</sub>

International

Research

university

residency

## **ADMISSION** RITERIA

#### **General requirements**

- Application form
- English language proficiency
- Degree requirements:

#### For undergraduate:

SAT reasoning + essay (1240 score) or ACT + writing (27 score)

Depending on major, SAT Subject Test - Math & Physics or Chemistry & Biology with at least 600 in each subject

#### For Masters:

min GPA 2.75 (+math test only for Master on Engineering Management) For PhD: Master Degree or equivalent. 怸 Full details:

seng.nu.edu.kz/admissions





employed

pursuing further degree (84% of them - abroad)



5% seeking employment

other

## FEES, FINANCING AND SCHOLARSHIPS

#### Applicants can be enrolled on the basis of

- State grant
- Ybyray Altynsarin grant
- Abay Kunanbayev grant for foreign students
- Scholarships from 50% to 90%
- Fee-paying basis

#### 500 scholarships are awarded each year in average

Student gender ratio:







## CIVIL AND ENVIRONMENTAL ENGINEERING

### WHAT IS CIVIL ENGINEERING?

Civil engineering is the design and construction of public works, such as dams, bridges and other large infrastructure projects. It is one of the oldest branches of engineering, dating back to when people first started living in permanent settlements and began shaping their environments to suit their needs. Today, the public is more likely to remember the names of great civil engineering projects than the names of the engineers who designed and built them. These include the Brooklyn Bridge (designed by John August Roebling and son Washington Roebling), the Hoover Dam (John L. Savage), the Panama Canal (John Frank Stevens) and the Golden Gate Bridge (Joseph Strauss and Charles Ellis). One notable exception is the Eiffel Tower, named after Gustave Eiffel, the French civil engineer whose company built it.

#### **ACADEMIC PROGRAMS:**

- Bachelor of Engineering in Civil and Environmental Engineering;
- Master of Science in Civil and Environmental Engineering;
- PhD in Civil Engineering

### **JOB OPPORTUNITIES:**

Civil engineers generally work indoors in offices. However, many spend time outdoors at construction sites so they can monitor operations or solve problems onsite. Most civil engineers employed in the private sector work for large construction contractors or as consultants. Government institutions that employ civil engineers include state transportation departments and the military.

- Architects;
- Civil Engineering Technicians;
- Construction Managers;
- Mechanical Engineers;
- Urban and Regional Planners;
- Surveyors;
- Environmental Engineers;
- Landscape Architects.



### BEng CIVIL & ENVIRONMENTAL ENGINEERING

|                                           | YEAR 1                                             |
|-------------------------------------------|----------------------------------------------------|
| Semester 1                                | Semester 2                                         |
| Calculus I                                | Calculus II                                        |
| Physics I for Scientists and Engineers    | Physics II for Scientists and Engineers            |
| Introduction to Engineering               | Engineering Materials I                            |
| Programming for Engineers                 | Kazakh I                                           |
| Rhetoric & Composition                    | History of Kazakhstan                              |
|                                           | YEAR 2                                             |
| Semester 1                                | Semester 2                                         |
| Differential Equations and Linear Algebra | Applied Statistics                                 |
| Structural Mechanics I                    | Numerical Methods in Engineering                   |
| Civil Engineering CAD and Surveying       | Structural Analysis                                |
| Environmental Chemistry                   | Environmental Engineering                          |
| Ethics                                    | Technical Writing                                  |
|                                           | YEAR 3                                             |
| Semester 1                                | Semester 2                                         |
| Structural Design - Concrete              | Structural Design - Steel                          |
| Geotechnical Engineering                  | Geotechnical Design                                |
| Fluid Mechanics I                         | Hydraulics and Hydrology                           |
| Civil Engineering Materials               | Fundamentals of Entrepreneurship & Manage-<br>ment |
| Managerial Economics                      | Elective 1 or IDP                                  |
|                                           | YEAR 4                                             |
| Semester 1                                | Semester 2                                         |
| Capstone Project                          | Capstone Project                                   |
| Transportation Engineering                | Construction Technology & Management               |
| Kazakh II                                 | Elective 4                                         |
| Elective 2                                | Elective 5                                         |
| Elective 3                                | Elective 6                                         |

#### LIST OF ELECTIVES:

#### STRUCTURAL ENGINEERING

- Behavior and Design of Structural System
- Prestressed Concrete Design
- Advanced Structural Mechanics

#### **GEOTECHNICAL ENGINEERING**

- Applied Soil Mechanics
- Foundation Engineering

#### **ENVIRONMENTAL ENGINEERING**

- Water & Wastewater Treatment Processes
- Solid and Hazardous Waste Management
- Membrane Separation Processes
- Air Quality Management

#### CONSTRUCTION ENGINEERING AND MANAGEMENT

- Application of Geomatics in Civil Engineering
- Modern Information Technology in Construction
- Water Resources Engineering
- Water Systems and Structures
- Water Supply and Distribution Management

#### TRANSPORTATION ENGINEERING

- Structure and Properties of Concrete Materials
- Traffic Engineering and Management
- Pavement Design and Performance

## STUDENT WHO WANTS TO CONDUCT RESEARCH CAN CHOOSE THE FOLLOWING ELECTIVE COURSES:

- Interdisciplinary Design Project
- Individual Research Project in Civil Engineering I
- Individual Research Project in Civil Engineering II

#### MSc CIVIL & ENVIRONMENTAL ENGINEERING

| YEAR                             | 1                           |
|----------------------------------|-----------------------------|
| Semester 1                       | Semester 2                  |
| Technical Communication          | Research Method and Ethics  |
| Advanced Applied Mathematics     | Research Seminar            |
| Finite Element Methods           | Advanced Project Management |
| Advanced Soil Mechanics          | Elective 1                  |
| Advanced Environmental Chemistry | Elective 2                  |
| YEAR                             | 2                           |
| Semester 1                       | Semester 2                  |
| MSc Thesis I                     | MSc Thesis II               |
| Elective 3                       | Elective 4                  |

- Structural Dynamics and Earthquake Engineering
- Advanced Concrete Technology
- Structural Evaluation and Rehabilitation
- Theory of Physico-chemical treatment processes
- Contaminated Site Management and Soil Treatment Technologies
- Environmental modeling development
- Computational Geomechanics
- Geotechnical Earthquake Engineering
- Advanced Foundation Engineering
- Building Information Modeling in Construction
- Estimating and Financial Management in Construction
- Principles and Applications of GIS and RS
- Renewable Energy
- Building Energy Analysis

## MECHANICAL AND AEROSPACE ENGINEERING

#### WHAT IS MECHANICAL ENGINEERING?

Mechanical engineers are the general practitioners of the engineering profession and they are involved in essentially every engineering application. Mechanical engineers play key roles in a wide range of industries including automotive, aerospace, biotechnology, computers, electronics, microelectromechanical systems, energy conversion, robotics and automation, and manufacturing . Like other engineers, mechanical engineers use computers extensively. Mechanical engineers are routinely responsible for the integration of sensors, controllers, and machinery. Computer technology helps mechanical engineers create and analyze designs, run simulations and test how a machine is likely to work, interact with connected systems, and generate specifications for parts.

### **ACADEMIC PROGRAMS:**

- Bachelor of Engineering in Mechanical and Aerospace Engineering
- Master of Science in Mechanical and Aerospace Engineering
- PhD in Mechanical Engineering

#### **JOB OPPORTUNITIES:**

The diversity within the Mechanical engineering curriculum provides graduates with a breadth of career opportunities including sales, marketing, management and design.

- Drafters;
- Materials Engineering;
- Mechanical Engineering Technicians;
- Petroleum Engineers;
- Natural Sciences Managers;
- Nuclear Engineers;
- Physicists and Astronomers.



### BEng MECHANICAL & AEROSPACE ENGINEERING

|                                               | YEAR 1                           |
|-----------------------------------------------|----------------------------------|
| Semester 1                                    | Semester 2                       |
| Calculus I                                    | Calculus II                      |
| Physics I                                     | Physics II                       |
| Introduction to Engineering                   | Engineering Materials I          |
| Programming for Engineers                     | Rhetoric & Composition           |
| History of Kazakhstan                         | Kazakh I                         |
|                                               | YEAR 2                           |
| Semester 1                                    | Semester 2                       |
| Engineering Mathematics                       | Applied Statistics               |
| Computer Aided Design                         | Numerical Methods in Engineering |
| Structural Mechanics I                        | Engineering Dynamics I           |
| Environmental Chemistry                       | Materials and Manufacturing I    |
| Technical Writing                             | Ethics                           |
|                                               | YEAR 3                           |
| Semester 1                                    | Semester 2                       |
| Fluid Mechanics I                             | Fluid Mechanics II               |
| Engineering Thermodynamics                    | Engineering Dynamics II          |
| Machine Elements Design                       | Computer Aided Engineering       |
| Control Systems                               | Managerial Economics             |
| Fundamentals of Entrepreneurship & Management | Elective 1                       |
|                                               | YEAR 4                           |
| Semester 1                                    | Semester 2                       |
| Capstone Project                              | Capstone Project                 |
| Heat Transfer                                 | Elective 3                       |
| Mechanical Systems Design                     | Elective 4                       |
| Kazakh II                                     | Elective 5                       |
| Elective 2                                    | Elective 6                       |

- Structural Mechanics II (TA: Materials & Manufacturing)
- Interdisciplinary Project IDP
- Vehicle Propulsion Systems (TA: Aerospace Engineering)
- Heating Ventilating & Air Conditioning (TA: Thermofluids & Energy Applications)
- Oscillations of Mechanical Systems (TA: System Dynamics & Control)
- Computer Aided Geometric Design (TA: Design & Analysis)
- Fire Engineering (TA: Thermofluids & Energy Applications)

- Aerodynamics (TA: Aerospace Engineering)
- Flight Mechanics (TA: Aerospace Engineering)
- Materials and Manufacturing II (TA: Materials & Manufacturing)
- Feasibility Analysis of Clean Energy Technologies (TA: Thermofluids & Energy Applications)
- Fundamentals of Multi-Body Dynamics (TA: System Dynamics & Control)
- Advanced Control Systems and Industrial Automation (TA: System Dynamics & Control)
- Advanced Topics in Computational Fluid Dynamics (TA: Design & Analysis)
- Advanced Heat Transfer (TA: Thermofluids & Energy Applications)

### MSc MECHANICAL & AEROSPACE ENGINEERING

| YEAR 1                           |                                |
|----------------------------------|--------------------------------|
| Semester 1                       | Semester 2                     |
| Technical Communication          | Research Methods and Ethics    |
| Advanced Applied Mathematics     | Research Seminar               |
| Finite Element Methods           | Advanced CFD and Heat Transfer |
| Modern Control Engineering       | Elective 1                     |
| Advanced Manufacturing Processes | Elective 2                     |
| YE                               | AR 2                           |
| Semester 1                       | Semester 2                     |
| MSc Thesis I                     | MSc Thesis II                  |
| Elective 3                       | Elective 4                     |

#### LIST OF ELECTIVES

#### • AREA: APPLIED MECHANICS:

Advanced Statistics and Probability; Numerical Techniques for Engineers; Modern Control in Aerospace Engineering; Flight Dynamics Principles; Fatigue Fracture Mechanics; Biomechanics.

#### • AREA: ENGINEERING DESIGN, MATERIALS, AND MANUFACTURING:

Advanced Engineering Design and Manufacturing; Design and Manufacturing with Environmental Concern; Design Optimization; Advanced Computer Aided Engineering; Space Structures Design; Digital Transformation Concepts.

#### • AREA: ENERGY AND THERMOFLUIDS:

Advanced Conduction and Radiation applied to Mechanical Engineering; Aerospace Propulsion; Building Energy Analysis; Computational Fluid-Structure Interaction: Methods, Models and Applications; Renewable Energy.

## ELECTRICAL AND COMPUTER ENGINEERING

### WHAT IS ELECTRICAL ENGINEERING?

Electrical engineering is one of the newer branches of engineering, and dates back to the late 19th century. It is the branch of engineering that deals with the technology of electricity. Electrical engineers work on a wide range of components, devices and systems, from the power systems that bring electricity to our homes and communication systems that allow us to keep in touch with family and friends, to the electronic devices, computers, sensors and medical equipment that shape our everyday lives.Some of the most prominent pioneers in electrical engineering includeThomas Edison (electric light bulb), George Westinghouse (alternating current), Nikola Tesla(induction motor), Guglielmo Marconi (radio) and Philo T. Farnsworth (television).

#### **ACADEMIC PROGRAMS:**

- Bachelor of Engineering in Electrical and Computer Engineering
- Master of Science in Electrical and Computer Engineering
- PhD in Electrical Engineering

### **JOB OPPORTUNITIES:**

Electrical and electronics engineers work primarily in research and development industries, engineering services firms, manufacturing and the federal government. Manufacturing industries that employ electrical engineers include automotive, marine, railroad, aerospace, defense, consumer electronics, commercial construction, lighting, computers and components, telecommunications and traffic control.

- Electronic Engineer;
- Signal Processing Engineer;
- Power Engineer;
- Telecommunications Engineer;
- Computer Engineer;
- Control Engineer;
- Instrumentation Engineer.



## BEng ELECTRICAL & COMPUTER ENGINEERING

| Y                                         | EAR 1                                              |
|-------------------------------------------|----------------------------------------------------|
| Semester 1                                | Semester 2                                         |
| Calculus I                                | Calculus II                                        |
| Physics I                                 | Physics II                                         |
| Introduction to Engineering               | Engineering Materials II                           |
| Programming for Engineers                 | History of Kazakhstan                              |
| Rhetoric and Composition                  | Kazakh I                                           |
| YI                                        | EAR 2                                              |
| Semester 1                                | Semester 2                                         |
| Differential Equations and Linear Algebra | Applied Statistics                                 |
| Signals and Systems                       | Numerical Methods in Engineering                   |
| Introduction to Electrical Circuits       | Solid State Devices                                |
| Digital Logic Design                      | Circuit Theory                                     |
| Ethics                                    | Technical Writing                                  |
| YI                                        | EAR 3                                              |
| Semester 1                                | Semester 2                                         |
| Electronic Circuits                       | Power System Analysis                              |
| Computer Architecture                     | Microprocessor Systems                             |
| Digital Signal Processing                 | Data Structures and Algorithms                     |
| Electrical Machines                       | Discrete Math Structures                           |
| Communication Systems                     | Interdisciplinary Design Project                   |
| YE                                        | EAR 4                                              |
| Semester 1                                | Semester 2                                         |
| Capstone Project                          | Capstone Project                                   |
| Managerial Economics                      | Fundamentals of Entrepreneurship & Man-<br>agement |
| Kazakh II                                 | Elective 3                                         |
| Elective 1                                | Elective 4                                         |
| Elective 2                                | Elective 5                                         |

| Devices and<br>Circuits                          | Power Systems                                           | Signal Processing and<br>Communications<br>Systems       | Computer<br>Engineering                                       |
|--------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|
|                                                  | Power Amplifier and<br>Wireless Transmitter<br>Circuits | Digital<br>Communications                                | Reconfigurable<br>Computing and FPGAs                         |
| Digital Image<br>Processing                      | Advanced Digital Signal<br>Processing                   | Data Communications                                      | Computer Networks                                             |
| Analog Integrated<br>Circuits                    | Power Electronics                                       | Numerical<br>Optimization<br>Techniques for<br>Engineers | Operating Systems                                             |
| Digital Integrated<br>Circuits                   | Power Transmission and<br>Distribution Systems          | Optical fiber<br>communications                          | Parallel Computer<br>Architecture                             |
| VLSI Design                                      | High Voltage<br>Engineering                             | Fundamentals of<br>Photonics                             | System identification and control                             |
| MOS Device<br>Modelling                          | Power System<br>Protection                              | Digital Image<br>Processing                              | Introduction to<br>Computational<br>Intelligence              |
| Introduction to<br>Computational<br>Intelligence | Advanced Power<br>System Analysis                       | Data Analytics                                           | Modeling and Simulation                                       |
| Logic Synthesis                                  | Electric Power<br>Generation                            | Introduction to<br>Stochastic Modeling                   | Database Systems                                              |
| RF Circuit Design                                | Industrial Electric<br>Machinery                        | Advanced Digital<br>Signal Processing                    | Introduction to Stochastic<br>Modeling                        |
| RF Integrated<br>Circuits                        | Microprocessor Systems                                  | RF Circuit Design                                        | Performance Evaluation<br>of Computer Networks<br>and Systems |
| High Frequency<br>Electronic Devices             | Computer Networks                                       | RF Integrated Circuits                                   | Wireless Networks                                             |
| Digital<br>Communications                        | Data Analytics                                          | High Frequency<br>Electronic Devices                     | Wireless Sensor Networks                                      |
| Data Analytics                                   | Numerical Optimization<br>Techniques for<br>Engineers   | Wireless Sensor<br>Networks                              | Introduction to<br>Cybersecurity                              |
| Optical sensors and biosensors                   | Introduction to<br>Cybersecurity                        | Wireless Networks                                        | Data Analytics                                                |
| Internship and<br>Coop                           | Internship and Coop                                     | Internship and Coop                                      | Internship and Coop                                           |
| Independent Study                                | Independent Study                                       | Independent Study                                        | Independent Study                                             |
| Special Topics in ECE                            | Special Topics in ECE                                   | Special Topics in ECE                                    | Special Topics in ECE                                         |
|                                                  | System identification<br>and control                    |                                                          | Wireless Networks                                             |

## MSc ELECTRICAL & COMPUTER ENGINEERING

| YEA                                     | AR 1                        |
|-----------------------------------------|-----------------------------|
| Semester 1                              | Semester 2                  |
| Technical Communication                 | Research Method and Ethics  |
| Advanced Applied Mathematics            | Research Seminar            |
| Advanced Data Structures and Algorithms | System Modeling and Control |
| Embedded Systems and Applications       | Elective 1                  |
| Statistics and Probability              | Elective 2                  |
| YEA                                     | AR 2                        |
| Semester 1                              | Semester 2                  |
| MSc Thesis I                            | MSc Thesis II               |
| Elective 3                              | Elective 4                  |

| Devices, Circuits and<br>Systems                     | Power and Control<br>Engineering              | Signal Processing<br>and Communication<br>Systems | Computer<br>Engineering               |
|------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------|
| Advanced Electro-<br>magnetics                       | Modern Electrical<br>Engineering              | Adaptive Signal Pro-<br>cessing                   | Computer Communication<br>Networks    |
| Semiconductor De-<br>vices                           | Industrial and<br>Commercial Power<br>Systems | Wireless Communi-<br>cations                      | Parallel Computer Archi-<br>tecture   |
| Advanced Topics in<br>Mixed Signal Circuit<br>Design | Advanced Power<br>System Protection           | Optical Communica-<br>tion                        | Computer and Network<br>Security      |
| Advanced Photonics                                   | Advanced Power<br>Electronics                 | Wireless Sensor Net-<br>works                     | Advanced Microprocessor<br>Systems    |
| RF Circuits                                          | Renewable Energy                              | Communication<br>Systems                          | Security of E-Systems and<br>Networks |

## ROBOTICS AND MECHATRONICS

### WHAT IS ROBOTICS AND MECHATRONICS?

Mechatronics is combination or junction of Electrical, Mechanical, and Computer Science Engineering. Mechatronics is the closest to Robotics with the slight and main difference in mechatronics systems inputsare provided whereas in robotics systems it acquires the inputs by their own. Robotics Engineering is the interdisciplinary branch of engineering and science that includes mechanical engineering, electrical engineering, computer science, and others. It deals with the design, construction, operation, and use of robots, as well as computer systems for their control, sensory feedback, and information processing.

#### **ACADEMIC PROGRAMS:**

- Bachelor of Science in Robotic and Mechatronics
- Master of Science in Robotics
- PhD in Robotics Engineering

#### **JOB OPPORTUNITIES:**

Robotics applications vary widely. Robots are used in the automotive, aerospace, metals, nuclear, mining, textile, and computer industries, among others. The robotics engineer must determine the particular needs of each application and customize the robot accordingly.Most robotics engineers are employed by private robot manufacturers or robot users. Some engineers work in military and space programs. Others work for colleges and universities or vocational and trade schools.

- Robotics Engineer;
- Mechatronics Engineer;
- Maintenance Technician;
- Machine Operator;
- Research Assistant;
- Project Engineer;
- Field Service Technician;
- Welder.



### **BSc ROBOTICS & MECHATRONICS**

| YEA                                         | R 1                                      |
|---------------------------------------------|------------------------------------------|
| Semester 1                                  | Semester 2                               |
| Calculus I                                  | Calculus II                              |
| Physics I                                   | Physics II                               |
| Programming                                 | Performance and Data Structures          |
| History of Kazakhstan                       | Rhetoric & Composition                   |
| YEAR 2                                      |                                          |
| Semester 1                                  | Semester 2                               |
| Mechanics: Statics and Dynamics             | System Dynamics and Modeling             |
| Electrical and Electronic Circuits I        | Electrical and Electronic Circuits II    |
| Signals and Sensing with Laboratory         | Microcontrollers with Lab                |
| Linear Algebra with Applications            | Introduction to Differential Equations   |
|                                             | COMM/SHSS elective                       |
| YEA                                         | R 3                                      |
| Semester 1                                  | Semester 2                               |
| Mechanical Design with CAD                  | Electromechanical Systems                |
| Linear Control Theory                       | Robotics I: Kinematics and Dynamics      |
| Major Elective 1                            | Major Elective 2                         |
| Natural Science Elective 1                  | Probability                              |
| Kazakh Language Course 1                    | Kazakh Language Course 2                 |
| YEA                                         | R 4                                      |
| Semester 1                                  | Semester 2                               |
| Robotics II: Control, Modeling and Learning | Robotic/Mechatronic System Design        |
| Major Elective 3                            | Major Elective 4                         |
| Ethics                                      | Graduation Project                       |
| Natural Science Elective 2                  | Business Fundamentals & Entrepreneurship |
| HSS Elective                                |                                          |

### MSc ROBOTICS

| YE                               | AR 1                            |
|----------------------------------|---------------------------------|
| Semester 1                       | Semester 2                      |
| Software Principles and Practice | Hardware Software Co-Design     |
| Robot Manipulation and Mobility  | Robot Perception and Vision     |
| Dynamic Systems and Control      | Innovation and Entrepreneurship |
| Teaching and learning            | Teaching Practicum              |
| Research Methods                 | Research Seminar                |
| YEAR 2                           |                                 |
| Semester 1                       | Semester 2                      |
| Elective 1                       | Thesis                          |
| Elective 2                       |                                 |
| Elective 3                       |                                 |
| Laboratory Practicum             |                                 |
| Thesis Proposal                  |                                 |

## COMPUTER SCIENCE

### WHAT IS COMPUTER SCIENCE?

Computer Science is the study of computers and computational systems. Unlike electrical and computer engineers, computer scientists deal mostly with software and software systems; this includes their theory, design, development, and application. Principal areas of study within Computer Science include artificial intelligence, computer systems and networks, security, database systems, human computer interaction, vision and graphics, numerical analysis, programming languages, software engineering, bioinformatics and theory of computing.

#### **ACADEMIC PROGRAMS:**

- Bachelor of Sciences in Computer Science
- Master of Science in Computer Science
- PhD in Computer Science

#### **JOB OPPORTUNITIES:**

Computer science majors need to think analytically to devise systems and programs, but must also be detail-oriented enough to troubleshoot problems. They must be able to communicate with non-technical people to assess their needs and convey technical information in plain language. Creativity is essential for those computer science majors who hope to come up with the latest app or technology gadget. Given the rapid rate of change within technology, computer science majors need to have a thirst for learning to keep up with the latest developments.

- Software Developer;
- Database Administrator;
- Computer Hardware Engineer;
- Computer Systems Analyst;
- Computer Network Architect;
- Web Developer;
- IT Project Manager;
- Computer and Information Research Scientists.



### **BSc COMPUTER SCIENCE**

| YE                                       | AR 1                            |  |  |
|------------------------------------------|---------------------------------|--|--|
| Semester 1                               | Semester 2                      |  |  |
| Calculus I                               | Calculus II                     |  |  |
| Physics I with Lab                       | Physics II with Lab             |  |  |
| Programming for Scientists and Engineers | Performance and Data Structures |  |  |
| History of Kazakhstan                    | (CORE Communications 1)         |  |  |
| YE                                       | AR 2                            |  |  |
| Semester 1                               | Semester 2                      |  |  |
| Computer Systems & Organization          | Formal Languages                |  |  |
| Programming Languages                    | Algorithms                      |  |  |
| Linear Algebra with Applications         | Microcontrollers with Lab       |  |  |
| Discrete Mathematics                     | Probability                     |  |  |
| SSH Communications 2                     | Kazakh Language 1               |  |  |
| YE                                       | YEAR 3                          |  |  |
| Semester 1                               | Semester 2                      |  |  |
| Artificial Intelligence                  | Computer Networks               |  |  |
| Database Systems                         | Operating Systems               |  |  |
| Software Engineering                     | Research Methods                |  |  |
| Natural Science Elective 1               | Natural Science Elective 2      |  |  |
| Kazakh Language 2                        | CORE Entrepreneurship           |  |  |
| YEA                                      | AR 4                            |  |  |
| Semester 1                               | Semester 2                      |  |  |
| Senior Project I                         | Senior Project II               |  |  |
| Technical Elective 1                     | Technical Elective 3            |  |  |
| Technical Elective 2                     | Technical Elective 4            |  |  |
| Free Elective 1                          | CORE Ethics                     |  |  |
| SSH Social Science                       |                                 |  |  |

#### LIST OF TECHNICAL ELECTIVES

- Systems Analysis and Design
- Software Project Management
- Human-Computer Interaction
- High Performance Computing
- Mobile Computing
- Advanced Mobile Computing
- Ubiquity and Sensing
- Data Mining and Visualization
- Intelligent Systems
- Information Security
- Scripting Languages
- Open Source Software
- Complexity and Computability

- Deep Learning
- Internship I
- Internship II
- Directed Study
- Introduction to Numerical Methods
- Introduction to Graph Theory
- Cryptography
- Computational Physics
- Applied Computational Physics
- Image Processing
- Machine Learning: Theory and Practice
- Brain Computer Interface

#### LIST OF CORE CS COURSES

- Programming for Scientists and Engineers
- Performance and Data Structures
- Computer Systems & Organization
- Computer Networks
- Database Systems
- Microcontrollers with Lab
- Research Methods
- Programming Languages
- Software Engineering
- Artificial Intelligence
- Senior Project I
- Senior Project II
- Algorithms
- Formal Language

### **MSc COMPUTER SCIENCE**

|                                                                                                            | YEAR 1                            |
|------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Semester 1                                                                                                 | Semester 2                        |
| Software Principles and Practice                                                                           | Systems Elective                  |
| CS Theory Elective                                                                                         | AI / Intelligent Systems Elective |
| Technical Elective 1                                                                                       | Technical Elective 2              |
| Technical Communication                                                                                    | Teaching Practicum                |
| Research Methods                                                                                           | Research Seminar                  |
| YEAR 2                                                                                                     |                                   |
|                                                                                                            | YEAR 2                            |
| Semester 1                                                                                                 | YEAR 2<br>Semester 2              |
| Semester 1<br>Technical Elective 3                                                                         | YEAR 2<br>Semester 2<br>Thesis    |
| Semester 1<br>Technical Elective 3<br>Technical Elective 4                                                 | YEAR 2 Semester 2 Thesis          |
| Semester 1<br>Technical Elective 3<br>Technical Elective 4<br>Technical Elective 5                         | YEAR 2<br>Semester 2<br>Thesis    |
| Semester 1<br>Technical Elective 3<br>Technical Elective 4<br>Technical Elective 5<br>Laboratory Practicum | YEAR 2 Semester 2 Thesis          |

## CHEMICAL AND MATERIALS ENGINEERING

### WHAT IS CHEMICAL ENGINEERING?

Chemical engineers are in great demand because of the large number of industries that depend on the synthesis and processing of chemicals and materials. In addition to traditional careers in the chemical, energy and oil industries, chemical engineers enjoy increasing opportunities in biotechnology, pharmaceuticals, electronic device fabrication and environmental engineering. Chemical engineers apply the principles of chemistry, biology, physics, and math to solve problems that involve the production or use of chemicals, fuel, drugs, food, and many other products. They design processes and equipment for large-scale manufacturing, plan and test production methods and byproducts treatment, and direct facility operations. In addition, chemical engineers work in the production of energy, electronics, food, clothing, and paper. They must understand how the manufacturing process affects the environment and the safety of workers and consumers.

#### **ACADEMIC PROGRAMS:**

- Bachelor of Engineering in Chemical and Materials Engineering
- Master of Science in Chemical and Materials Engineering
- PhD in Chemical Engineering

### **JOB OPPORTUNITIES:**

Many chemical engineers work in industries whose products are sought by many manufacturing firms. For instance, they work for firms that manufacture plastic resins, which are used to increase fuel efficiency in automobiles. Increased availability of domestically produced natural gas should increase manufacturing potential in the industries employing these engineers. In addition, chemical engineering will continue to migrate into dynamic fields, such as nanotechnology, alternative energies, and biotechnology, and thereby help to sustain demand for engineering services in many manufacturing industries.

- Biomedical Engineers;
- Chemical Technicians;
- Chemists and Materials Scientists;
- Nuclear Engineers;
- Occupational Health and Safety Specialists and Technicians;
- Energy Engineer;
- Petroleum Engineer;
- Manufacturing Engineer.

### **BEng CHEMICAL & MATERIALS ENGINEERING**

| YEAR 1                                              |                                     |  |
|-----------------------------------------------------|-------------------------------------|--|
| Semester 1                                          | Semester 2                          |  |
| Calculus I                                          | Calculus II                         |  |
| Physics I                                           | Physics II                          |  |
| Introduction to Engineering                         | Engineering Materials II            |  |
| Programming for Engineers                           | Kazakh I                            |  |
| History of Kazakhstan                               | Rhetoric & Composition              |  |
| YEA                                                 | AR 2                                |  |
| Semester 1                                          | Semester 2                          |  |
| Differential Equations and Linear Algebra           | Applied Statistics                  |  |
| Basic Principles and Calculations in Chem.<br>Eng.  | Numerical Methods in Engineering    |  |
| Inorganic and Analytical Chemistry                  | Fluid Mechanics                     |  |
| Chemical Engineering Thermodynamics                 | Organic and Polymer Chemistry       |  |
| Technical Writing                                   | Ethics                              |  |
| YE#                                                 | AR 3                                |  |
| Semester 1                                          | Semester 2                          |  |
| Instrumental Methods of Analysis for Engi-<br>neers | Separation Processes                |  |
| Heat and Mass Transfer                              | Chemical Reaction Engineering       |  |
| Applied Mathematics for Process Design              | Chemical Engineering Lab 1          |  |
| Fundamentals of Entrepreneurship & Man-<br>agement  | Managerial Economics                |  |
| Elective 1                                          | Interdisciplinary Design Project    |  |
| YEAR 4                                              |                                     |  |
| Semester 1                                          | Semester 2                          |  |
| Capstone Project                                    | Capstone Project                    |  |
| Process Design and Simulation                       | Materials Chemistry                 |  |
| Chemical Engineering Lab 2                          | Chemical Process Control and Safety |  |
| Language and Ethnicity                              | Elective 3                          |  |
| Elective 2                                          | Elective 4                          |  |

### LIST OF ELECTIVES:

#### CHEMICAL ENGINEERING COURSES:

- Atmospheric Chemistry and Physics
- Environment and Development
- Process Design for Environmental Applications
- Advanced Process Simulation
- Industrial Wastewater Treatment and Reclamation

- Multiphase Systems
- Advanced Transport Phenomena
- Heterogeneous Reactor Engineering
- Colloids and Surface Science
- Advanced Chemical Process Safety and Risk Modeling

#### MATERIALS ENGINEERING COURSES:

- Electrochemical Engineering
- Corrosion Protection in Oil and Gas Industry
- Biomechanics
- Tissue Engineering
- Polymer Processing and Rheology
- Powder Technology

### **MSc CHEMICAL & MATERIALS ENGINEERING**

| YEAR 1                                         |                                 |  |
|------------------------------------------------|---------------------------------|--|
| Semester 1                                     | Semester 2                      |  |
| Advanced Applied Mathematics                   | Research Methods and Ethics     |  |
| Technical communication                        | Research Seminar                |  |
| Advanced Materials Processing                  | Advanced Heat and Mass Transfer |  |
| Advanced Materials Characterization<br>Methods | Elective 1                      |  |
| Advanced Chemical Reaction Engineering         | Elective 2                      |  |
| YEAR 2                                         |                                 |  |
| Semester 1                                     | Semester 2                      |  |
| MSc Thesis I                                   | MSc Thesis II                   |  |
| Elective 3                                     | Elective 4                      |  |

- Computational Fluid Dynamics in Chemical and Materials Engineering
- Advanced Chemical Thermodynamics
- Computer-Aided Process Design for Petrochemical Industry
- Crude Oil Processing
- Advanced Safety, Reliability, and Risk Engineering in Process Industries
- Emerging Pollutants: Sources, Fate, and Control
- Analysis of Exposure to Toxic Chemicals
- Polymer Melt Fluid Mechanics and Processing
- Advanced Powder Processing
- Food Engineering and Processing
- Porous and Powder Materials Characterization
- Advanced Materials for Environmental and Biomedical Applications

## BIOMEDICAL ENGINEERING

#### WHAT IS BIOMEDICAL ENGINEERING?

Biomedical Engineering is the study of medical equipment used in an environment of care or training and how this equipment interfaces with the human body. Bioengineers work with doctors, therapists and researchers to develop systems, equipment and devices in order to solve clinical problems. Biomedical engineers have developed a number of life-enhancing and life-saving technologies. These include:

- Prosthetics, such as dentures and artificial limb replacements.
- Surgical devices and systems, such as robotic and laser surgery.
- Systems to monitor vital signs and blood chemistry.
- Implanted devices, such as insulin pumps, pacemakers and artificial organs.
- Imaging methods, such as ultrasound, X-rays, particle beams and magnetic resonance.

#### **ACADEMIC PROGRAMS:**

Master of Science in Biomedical Engineering

#### **JOB OPPORTUNITIES:**

- Biomechanical engineer
- Rehabilitation engineer
- Bioengineering researcher
- Clinical engineer
- Product Engineer
- Biomedical physiotherapist



### MSc BIOMEDICAL ENGINEERING

| YEAR 1                             |                                            |  |
|------------------------------------|--------------------------------------------|--|
| Semester 1                         | Semester 2                                 |  |
| Advanced Applied Mathematics       | Research Method and Ethics                 |  |
| Technical Communication            | Research Seminar                           |  |
| Anatomy and Physiology             | Regenerative Medicine / Tissue Engineering |  |
| Biosensors                         | Ethics for Biomedical Engineers            |  |
| Biomaterials Science & Engineering | Elective                                   |  |
| YEAR 2                             |                                            |  |
| Semester 1                         | Semester 2                                 |  |
| Research Project I                 | Research Project II                        |  |
| Elective                           | Elective                                   |  |

- Strategies for Controlled Topical Delivery of Drugs
- Microbiology
- Diagnostic Methods and Clinical Chemistry
- Medical Device Technology
- Infectious Diseases and Antimicrobial Strategies
- Clinical Imaging Techniques
- Biomedical Engineering Design
- Mechanics of Living Tissues
- Biosensors laboratory
- Biomaterials laboratory
- Tissue Engineering/Regenerative Medicine laboratory
- Biomechanics lab

## ENGINEERING MANAGEMENT

### WHAT IS ENGINEERING MANAGEMENT?

The Master of Engineering Management (MEM) degree program is a specialized degree program offered by the School of Engineering and Digital Sciences (SEDS) in partnership with the Graduate School of Business (GSB) at Nazarbayev University (NU). The aim of the program is to prepare students with the technical skills and business knowledge for leadership of engineering-related units of enterprises with innovative solutions for complex business problems.

The MEM program emphasizes adapting and applying analytical skills and scientific knowledge into business practice. Students learn about project management, operations management, supply chain management, engineering management, engineering economy, quality and lean management, marketing, R&D management, new product development, entrepreneurship, business ethics, business strategy, business communication, leading change and innovation, and many other aspects of managing a successful business.

It is the School mission to train the future scholars of Kazakhstan. By delivering the Master of Engineering Management program at an international standard level, we are offering our master's students new opportunities in terms of Ph.D. and positions in research centers, here or abroad.

### **ACADEMIC PROGRAMS:**

Master of Engineering Management

#### **JOB OPPORTUNITIES:**

- Engineering Project Manager
- Senior Lead Analyst
- Cost Systems Analyst
- Industrial and System ManagementEngineer



### MASTER OF ENGINEERING MANAGEMENT

| YEAR 1                                          |                                          |  |
|-------------------------------------------------|------------------------------------------|--|
| Semester 1                                      | Semester 2                               |  |
| Advanced Statistics and Probability             | Accounting                               |  |
| Research Methods & Ethics                       | Management of Organizations              |  |
| Engineering Management and Economy              | Finance                                  |  |
| Project Management                              | Marketing                                |  |
| Elective                                        | Business Strategy                        |  |
|                                                 | Entrepreneurship                         |  |
|                                                 | Leading Change                           |  |
|                                                 | Business Communication                   |  |
| YEAR 2                                          |                                          |  |
| Semester 1                                      | Semester 2                               |  |
| Production and Service Operations<br>Management | Capstone Project                         |  |
| Supply Chain Management                         | Managing Product and Service Development |  |
| Engineering Decision Tools                      | Elective                                 |  |
| Elective                                        |                                          |  |
| Elective                                        |                                          |  |

- Operations Research Methods
- Knowledge Management & Innovation
- Big Data and Information Management
- Globalization and Engineering
- Quality and Lean Management
- Systems Engineering



#### WHAT IS DATA SCIENCE?

Data science is the study of where information comes from, what it represents and how it can be turned into a valuable resource in the creation of business and IT strategies. Mining large amounts of structured and unstructured data to identify patterns can help an organization rein in costs, increase efficiencies, recognize new market opportunities and increase the organization's competitive advantage. Advancements in technology helped data science evolve from cleaning datasets and applying statistical methods to a field that encompasses data analysis, predictive analytics, data mining, business intelligence, machine learning, deep learning, and so much more.

#### **ACADEMIC PROGRAMS:**

• Master of Science in Data Science

### **JOB OPPORTUNITIES:**

Currently, there is a huge need for skilled and certified Data Science professionals. They are among the highest-paid professionals in the IT industry. The main job titles offered in data science:

- Data analyst
- BI analyst
- Data engineer
- Data architect
- Data scientist



## MSc DATA SCIENCE

| YEAR 1                                      |                                  |  |
|---------------------------------------------|----------------------------------|--|
| Semester 1                                  | Semester 2                       |  |
| Fundamentals of Data Science                | Statistical Analysis             |  |
| Probability and Statistics for Data Science | Data Mining and Decision Support |  |
| Database Management Systems                 | Big Data Analytics               |  |
| Process and Project Management              | Innovation and Entrepreneurship  |  |
| Research Methods                            | Research Seminar                 |  |
| YEAR 2                                      |                                  |  |
| Semester 1                                  | Semester 2                       |  |
| Technical Elective 1                        | Thesis                           |  |
| Technical Elective 2                        |                                  |  |
| Technical Elective 3                        |                                  |  |
| Data-Driven Innovation                      |                                  |  |
| Thesis Proposal                             |                                  |  |



# CONTACT US

#### Nazarbayev University

School of Engineering and Digital Sciences Block 3 Nazarbayev University 53 Kabanbay batyr Ave. Nur-Sultan city, 010000 Republic of Kazakhstan Email: seds\_admissions@nu.edu.kz





SEDS.NU.EDU.KZ